

Clack Developer Documentation

Contact: info@clackrouter.net
Document Version: 2.0 (3/22/2006)

Associated Clack Version: 1.0

The Clack Graphical Router Toolkit is an extensible framework for graphical education
about networking infrastructure and protocols. Clack is a tool for educators looking to
give students a better avenue for learning about low-level Internet networking in an
intuitive and hands-on way.

This document is for those who wish to extend Clack to provide additional functionality.
The two main ways to extend Clack are:

• Adding new “router components” to implement new router functionality or
specialized traffic inspection and analysis capabilities.

• Adding new “Clack applications” to provide different traffic loads and types
within a Clack virtual network.

Clack was designed specifically so that adding new functionality would be extremely
simple. Section 1 of this document provides an overview of the Clack architecture,
which will be useful in providing an understanding of the overall system and defining
Clack specific vocabulary. Section 2 describes everything that is needed to run Clack
locally for development.

The remainder of the document then relies heavily on code examples to demonstrate how
to extend Clack. Section 3 describes building Clack router components, starting with
simple examples and then describing how increasingly sophisticated types of components
can be constructed. Section 4 focuses on building Clack applications and can be read
largely independent from Section 3.

Main sources for help with Clack development:

• This developer guide and the corresponding net.clackrouter.example.* source
files available within the Clack source code download.

• The Javadoc for the entire Clack source code is online at

http://www.clackrouter.net/javadoc/ and is also available for download on the site.

• Viewing existing router components and applications as examples is a great way
to become familiar with the Clack paradigm. Download the source and explore
the net.clackrouter.component.*, net.clackrouter.net.application.*, and other
packages.

• Clack was detailed an extensive undergraduate thesis documents available at:

http://www.clackroute.net/clack_thesis.pdf . While this document is somewhat
academic it remains the most detailed description of Clack’s design and
capabilities and skimming it can provide lots of good information.

• Current Clack components, along with detailed descriptions are available via the

Clack Component Index at http://www.clackrouter.net/componentindex.html .
These are the same HTML descriptions available in the component’s property
views.

• Questions not handled in the above documentation can be directed to

info@clackrouter.net , we’re happy to help!

Section 1: Introduction to the architecture of a Clack Router

Clack routers exist in virtual networks within the Virtual Network System (VNS), which
is operated at Stanford University. While the goal of Clack is to make sure that only very
few details related to VNS are ever exposed to you, an understanding of how Clack
interfaces with the system is important.

The Virtual Network System (VNS)

The Virtual Network System (VNS) provides the base of network virtualization upon
which the Clack toolkit is built. A VNS server can host hundreds of virtual network
topologies, which are made up of both physical and virtual hosts connected by virtual
links. The VNS infrastructure, including servers and physical hosts, is operated and
administered out of Stanford University for use by both local and remote courses.
Physical hosts are real machines residing within the VNS lab that are virtualized into
each topology. Virtual hosts are not physical machines but rather represent generic
network processing entities with interfaces connected to other virtual or physical hosts in
the topology.

After connecting to the VNS server, a client like a Clack router can take on the role of a
virtual host by requesting that the server forward the client traffic seen by a particular

virtual host within a virtual topology. The client may then inspect, discard, modify, or
inject new traffic into the network using any of the virtual host’s interfaces, giving it the
full capabilities of a real network host. Packets extracted from or injected into the
network are full Ethernet frames, with the virtual host performing all packet-level
processing.

The most significant contribution of VNS is that hosts on these topologies are given
routable IPs and are connected to the Internet. Thus, the traffic processed by virtual and
physical hosts represents real Internet protocols, allowing a student to open a command
prompt, ping her router, and watch the router respond.

For more information about VNS visit http://yuba.stanford.edu/vns/.

Clack Basics

The Clack Router Toolkit is a Java library and accompanying graphical application that
provides a platform for using VNS to achieve a variety of network educational goals.
Clack can be run as a standalone Java application, or as a trusted Applet.

A Clack router is a collection of interconnected packet processing blocks that we refer to
as “components.” This design logic borrows heavily from the Click Router, a high-
performance modular router for Linux created at MIT. As in Click, an individual
component generally implements only a small portion of router functionality, keeping
component design simple and easy to understand. Components perform packet
processing and can keep state as configured manually by the user or automatically via a
protocol. For example, the IPRouteLookup component contains a simple routing table
and tags packets with an identifier based on the packet’s correct out-bound interface.
Components have one or more “ports,” that provide channels for passing packets between
different components. Each port has a direction, “In” or “Out,” and semantics that are
specified by the component creator. For example, the IPRouteLookup component has an
“In” port for accepting packets that require a routing table lookup and an “Out” port for
packets that have been tagged with the outgoing interface. Other IPRouteLookup ”Out”
ports carry packets sent to local IP addresses or packets for which no routing entry could
be found.

Another distinction is that ports may be classified as either “Push” or “Pull.” With a
“Push” port, data can be sent to or from a component immediately, but in the case of
”Pull” ports, the recipient only receives a packet when it asks its neighboring port for a
packet. This “Pull” behavior is designed to allow for various types of packet buffering
within the router.

A simple configuration for a router with three interfaces. Packets enter at FromDevice components at the
top and exit the router at ToDevice components near the bottom. Components processing at layers higher
in the standard OSI model are positioned further to the right and components are logically grouped by
color.

Component ports are connected via unidirectional connectors called “wires.” Wires begin
at an ”Out” port and end at an ”In” port and only ports of the same “Push” or “Pull”
classification can be connected. Clack routers are simply a set of components connected
by wires that implement the desired packet processing functionality.

Router Packet Processing

A router component initiates packet processing because of one of two possible events.
First, a Clack client may recognize that the VNS server has sent it a packet destined to
one of its virtual interfaces within the topology. In this case the main router processing
loop pushes the packet to an input port on a FromDevice component representing the
correct input interface. The packet may continue to be processed by being pushed out
ports of successive components until it is discarded or reaches a queuing component. The
second method for initiating packet processing allows components to register a call-back
function with the router, which will be called once per processing loop. This “polling”
behavior allows internal components to initiate packet processing by removing buffered
packets from queues or generating new traffic.

Component and Router Implementation

Packets themselves are Java objects, inheriting from the generic VNSPacket class. Packet
processing is simplified by the use of specialized protocol-specific packet classes with
accessor functions for header information and data. Each component is implemented as a
single Java class that inherits from the abstract ClackComponent class, which provides
the basic mechanism for interoperability among all components. Ports are implemented
within the ClackPort class that handles the actual transfer of packets between
components. Each component object has a collection of ClackPort objects representing
the description and connectivity of each logical port.

All components with push input ports implement the void acceptPacket(VNSPacket
packet, int port) function to act as the starting point for packet processing. Since each port
number has semantics defined by the component writer, the method knows how to handle
packets passed to any port. Packets are pushed out of a component using the void
pushOut(VNSPacket packet) on a ClackPort object, which sends the packet to the
connected component for further processing.

For a pull input, components call the VNSPacket pullIn() method of the ClackPort class,
which queries the neighboring component connected on that port to see if it has a packet
to pass on. Components with output pull ports provide the VNSPacket
acceptPullRequest() method to answer these queries. In most cases, a pullIn() call is
initiated by the call-back function registered with the router. For call-backs, components
must register with the router and implement the void poll() method of the
ClackComponent interface.

Current Router Functionality

We have already implemented a base set of components, comprising a simple router. This
includes ARP functionality, basic IP forwarding and ICMP handling for generating echo,
TTL-expired, and port-unreachable messages. In our implementation, queues are explicit
components to provide greater transparency and configurability. In addition, we have
developed simplified but inter-operable TCP and UDP stacks, including a supporting
socket interface that supports the creation of networking applications to run on top of
these network layers.

Section 2: Developing With Clack

This section covers the basics you will need to know in order to set up your environment
for developing with Clack. The remainder of this document assumes the use of Clack
version 1.0.0, though later versions should work just as well.

Running Clack

While Clack is most often deployed as a Java applet, development is greatly simplified
by running Clack locally.

In order to develop new components or applications for Clack, you DO NOT NEED TO
DOWNLOAD THE SOURCE. Downloading the JAR file (labeled as “Binary” in the
downloads section) and including it in your classpath will be sufficient.

To run Clack as seen in the website demo, simply unzip the jar file to the current
directory and run (all as one line):

java –cp clack-1.00.jar net.clackrouter.gui.ClackLoader –u
http://www.clackrouter.net/demo/main_demo.topo

Clack Configuration Files

When running Clack above, we used the default Clack config file from the online demo.
Clack configuration files define the following:

• Connection parameters used to contact the VNS server.

• The range of VNS virtual network topologies that the Clack client will attempt to
connect to. Clack will attempt to use successive topologies in a range until it
finds one that is available.

• Configuration information for each router within the topology. This includes

what components are inside the router, how these components are connected by
wires, and where components are located graphically within Clack’s “router
view”.

• The graphical layout of different hosts for the “topology view” of Clack that is

displayed immediately after a topology is loaded.

For very simple development, using this default file is sufficient, but if you want to either
need to connect to a set of topologies separate from the public pool, or you want to
automatically load a different default router configuration (ie: one with your new
component automatically included), you will want to have your configuration as a local
file.

While running Clack, you can modify your router to your liking, and then choose File-
>Save to save the configuration to the local file system. In this example, we use a
locally saved config file called myclack.topo saved in the current directory.

We can now run:

java –cp clack-1.00.jar net.clackrouter.gui.ClackLoader –f myclack.topo

While most of the configuration file should not be edited manually, it can be useful to
open the XML file in a text editor in order to change either the connection settings or the
range of topologies. In either case, only the top line must be modified, which looks like:

<topology number="36-40" server="vns-2.stanford.edu" port="12345">

This line specifies that Clack will connect to the topology range 36-40 and will use the
VNS server running on port 12345 of vns-2.stanford.edu.

Running Extended Versions of Clack

The default class for running Clack is the ClackLoader, which can run Clack both as an
applet and as a Java application. It simple passes command line arguments to a
ClackFramework object which handles everything else.

public class ClackLoader extends Applet {

 //When launched as an Applet
 public void init() {
 String[] params = {};
 if(getParameter(ClackFramework.PARAM_STRING) != null)

params =
getParameter(ClackFramework.PARAM_STRING).split(" ");

 load(params, this);
 }

 // When launched as an application
 public static void main(String[] args) {
 load(args, null);
 }

 public static void load(String[] args, Applet parent){
 // create main framework handle
 ClackFramework framework = new ClackFramework(parent);
 // configure and show the Clack application
 ClackFrameworkHelper.configureClackFramework(args, framework);
 }
}

Extending Clack to support new components and applications is simply a matter of
letting the framework know about these new resources. To do this, create a class of your
own identical to the ClackLoader class and use the addAdditionalComponent() and
addClackApplication() methods of the ClackFramework class.

When compiling these new classes, you must include the Clack JAR file in your
classpath. For example, if you have all of your files in the local directory, type:

javac –cp clack-1.0.0.jar *.java

If you implemented your loader class as in MyLoader.java (using the default package)
and have this and any other required class files in the current directory, you can run Clack
using:

java –cp .:clack-1.0.0.jar MyLoader –f myclack.topo

Note that the classpath includes two elements: the clack JAR files and the current
directory.

Building from Source

While adding Clack components or applications does not require building Clack from
source, you may want to build Clack from source to either make substantial modifications
or to make debugging easier.

To do this, you must have Apache Ant (http://ant.apache.org) installed in addition to a
java complier. Grab the source zip file from the downloads section and unzip it. From
the root of this directory structure run ant on the provided build.xml file. The main Clack
JAR file can then be found in the build/lib subdirectory.

Section 3: Creating Clack Components

You now know enough of the Clack background to start the fun stuff: building new
router functionality that can be integrated into Clack.

EvenOdd Component

Well, here it is, your first Clack component:

public class EvenOdd extends ClackComponent {

 public static int PORT_IN = 0, PORT_ODD_OUT = 1, PORT_EVEN_OUT = 2;
 public static int NUM_PORTS = 3;

 public EvenOdd(Router r, String name){
 super(r, name);
 setupPorts(NUM_PORTS);
 }

 protected void setupPorts(int numPorts){
 super.setupPorts(numPorts);
 createInputPushPort(PORT_IN,"input", VNSIPPacket.class);

createOutputPushPort(PORT_ODD_OUT, "odd packet output",
VNSIPPacket.class);

 createOutputPushPort(PORT_EVEN_OUT, "even packet output",
VNSIPPacket.class);
 }

 public void acceptPacket(VNSPacket packet, int port_number){
 if(port_number == PORT_IN){
 VNSIPPacket ippacket = (VNSIPPacket)packet;
 byte[] dst_bytes =
ippacket.getHeader().getDestinationAddress().array();
 if((dst_bytes[3] & 0x1) == 0){
 log("Even!");
 m_ports[PORT_EVEN_OUT].pushOut(packet);
 }else {
 log("Odd!");
 m_ports[PORT_ODD_OUT].pushOut(packet);
 }
 }else {
 /* impossible */
 }
 }

}

As you can tell, we’ve skipped the classic “hello world” example and have gone right for
a serious example. This component receives IP packets and sends the packet out one of
two output ports depending on whether the final byte in the IP address is even or odd.

The first thing to notice is that this class, like ALL Clack components, extends the base
ClackComponent class. This base class provides a significant amount of common
functionality used in all components.

The type and meaning of the component’s ports are defined in the setupPorts() method.
The call to the superclass method allocates three ports for the ports, and then we create
three individual ports, specifying the port number, a text description, and typing
information to describe what kind of packets may be passed through the ports. All of
these ports are typed to accept IP packets.

The other main method, acceptPacket() implements packet processing when a packet is
received via the input port. For packets that have arrived via our input port, we cast the
packet as an IP packet, and then get the bytes representing the destination address from
the packet header. Then depending on the even/odd value of the address, we push a
packet out one of two output ports. We also log a simple statement to the console for
each packet.

Now let’s run this component! Take the loader class that you created in Section 2, and
add just a single line:

framework.addAdditionalComponent("EvenOdd",
"net.clackrouter.example.EvenOdd");

Now the “Additional” submenu of the Clack Add component menu will give you the
option of adding an EvenOdd component. We want to insert this component into our
router. This requires finding a place were we will be processing IP packets. Delete the
connection between the “Level2Demux” and the “CheckIPHeader” components. Add an
“EvenOdd” component between the two connected the IP packet output of the demux to
the input of the EvenOdd component. Connect the even output of the EvenOdd
component to the CheckIPHeader component, which will result in packets to even
addresses being forwarded correctly through the router. Now, add a “Counter”
component from the “auxiliary” sub-menu, and connect the odd output of the Even odd
component to the Counter input.

���������	
����������	�������������� ����������������	����	����

Double-click on the EvenOdd component to bring up its property view. Click on the
“Ports” subtab to verify that the correct port connections have been made.

Now you can use File -> Save to save this file as your new “myclack.topo” file. This
means this configuration will be loaded automatically each time your run Clack.

So let’s test the router. First, ping an IP address on the router that has a last byte that is
even (e.g. 171.67.71.60). This should work, since the even output port forwards the
packets to the IPHeaderCheck component. Look at the Log in the property view to make
sure your component is reporting an even packet. Now ping an odd IP address (e.g.
171.67.71.61). No ping response will be generated, since your EvenOdd component does
not forward the packet to your router’s ICMPEcho component, but instead sends it to the
Counter which drops the packet.

Congratulations! You now have seen all of what you have to know to create many types
of basic Clack components. We encourage you to experiment with additional
modifications to this example component.

Once you are comfortable with how Clack components work, the best way to learn more
and start getting involved with Clack development is to take a look at existing
components in the net.clackrouter.component.* packages and explore how they work.
Try modifying these components to create new ones of your own. If you have an idea for
a component, but don’t know how to code some functionality up, think about what other
components have to do something similar and look to them for assistance.

Section 4: Clack Applications

Clack also can run applications that run in a simple “Clack Shell”. These applications
can be used to:

1) View or configure router state.
2) Generate interesting traffic to visualize in your router.

The Clack Shell can be launched by clicking on the shell icon in the toolbar, or using
View -> SpawnClackShell . A shell is specific to an individual instance of a Clack
router, and multiple shells can be launched to interact with different routers.

The Clack Shell, used for launching various Clack applications. Here a simple clone of the ‘ifconfig’
function displays basic information about the router interfaces.

Your First Clack Application

Applications are launched using a simple command name, and can be given command-
line parameters that are parsed by the application. Applications are run as full Java
threads and as a result can perform very powerful functionality. However, we of course
start with a very simple example:

public class HelloApp extends ClackApplication {

 public void application_main(String[] args){

 print("hello...\n");
 if(args.length > 1){
 print("You said: " + args[1]);
 }else {
 print("You're mighty quiet today...");
 }
 }

 public String getDescription() { return "silly example application"; }

}

A couple of things to note: All applications subclass the ClackApplication, which
provides various methods that provide a back API to the “system”, such as printing to
console, accessing sockets, etc. When a command is run, its command line arguments
(including the command name itself) are passed to it in an arguments array, similar to any
standard application you would write. Here we simply use the print() command to send
data to the shell output. getDescription() is used to provide a brief description of the
program when the user queries the shell about what applications are installed by typing
“?” at the command prompt.

But how does Clack know about a new applications that you write? Simple: you inform
the ClackFramework object when you are loading Clack. This is very similar to how we
informed Clack about newly written components in Section 3. To use the abovedd the
following line to your loading method (see net.clackrouter.example.ExampleLoader):

framework.getApplicationManager().addApplicationMapping("hello",
"net.clackrouter.example.HelloApp");

The first string argument specifies the command name that needs to be entered into the
shell to run the program. The second is the class name that is run to perform the
requested operations.

Accessing and Modifying Router State Using Applications

A major purpose of the Clack Shell is to provide an easy way to configure parts of the
router without requiring any GUI coding on behalf or the component creator. For
example, the following code snippet shows a bit of code from a simplified
implementation of Ifconfig.

public void application_main(String[] commands){
 Router router = getRouter();

 String iface_name = commands[1];
 if(commands[2].equals("up")) {
 router.updateLinkStatus(iface_name, true, true);

 print("Bringing up interface " + iface_name + "\n");
}

}

This code demonstrates the use of the getRouter() method, which provides a reference to
the router that the shell is currently being run on. Another common paradigm for
modifying are arbitrary component is to loop through all components contained by the
router and modifying any that are of a certain type. For example, the Clack Shell
implementation of ping contains the following code snippet:

ClackComponent[] all_comps = getRouter().getAllComponents();
for(int i = 0; i < all_comps.length; i++){
 if(all_comps[i] instanceof ICMPEcho) {
 ICMPEcho echo = (ICMPEcho)all_comps[i];
 echo.addListener(this);
 for(int j = 0; j < pingCount; j++){
 send_times[j] = System.currentTimeMillis();
 echo.sendEchoRequest(addr, identifier, j);
 Thread.sleep(SLEEP_TIME_MSEC);
 }
 break;
 }
}

Using TCP/UDP Sockets in a Clack Application.

Finally, Clack applications can also leverage a specialize socket layer to use TCP or UDP
functionality implemented within the Clack router. Because socket interfaces tend to be
fairly complicated, it is best to check out the javadoc for the TCPSocket and UDPSocket
classes to get the full details of how they operate. However, if you are familiar with
common socket terminology, using these sockets should be a snap as the API is a
simplification of common socket interfaces.

Here is the application_main() function for a Clack client application that performs a
simple HTTP GET / to a provided destination:

public void application_main(String[] args) {
 try {
 TCPSocket socket = createTCPSocket();

InetAddress localAddr =
getRouter().getInputInterfaces()[0].getIPAddress();

 InetAddress remoteAddr = InetAddress.getByName(args[1]);
 if(args.length > 2)
 localAddr = InetAddress.getByName(args[2]);

 StringBuffer sBuf = new StringBuffer(200);
 print("HTTPGetter is connecting to " + remoteAddr);
 Random rand = new Random();
 socket.bind(localAddr, rand.nextInt(5000));
 socket.connect(remoteAddr, 80);
 Thread.sleep(500);
 socket.send(ByteBuffer.wrap("GET / HTTP/1.0\r\n\r\n".getBytes()));

 while(true){
 ByteBuffer buf_in = socket.recv(2000, 1000);
 if(buf_in == null) break;
 if(buf_in.capacity() > 0)
 sBuf.append(new String(buf_in.array()));
 }
 socket.close();
 print("HTTP Get Request returned: \n" + sBuf);
 }catch (Exception e){
 e.printStackTrace();
 }
}

Similarly, here is a bit of code that implements a VERY basic webserver with a single
static response:

String resp = "HTTP/1.0 200 OK\r\nContent-Type: text/html\r\n\r\n<html> <h1>
HELLO </h1> </html>\r\n\r\n";
ByteBuffer resp_buf = ByteBuffer.wrap(response.getBytes()));
socket.bind(localAddr, 80);
socket.listen();

while (true) {
 print("MiniWebServer is listening on port 80 of " + localAddr + "\n");
 TCPSocket clientSocket = socket.accept(); // blocks until connection is received

 print("MiniWebServer received a connection! \n");
 ByteBuffer request_buf = ByteBuffer.allocate(0);
 while(request_buf.capacity() == 0)
 request_buf = clientSocket.recv(2000, 2000);

 String request_str = new String(request_buf.array());
 print("MiniWebServer received:\n'" + request_str + "'\n");

 clientSocket.send(resp_buf);

clientSocket.close();
}

More examples of Clack applications can be found in the net.clackrouter.applications
package. Note that you can also use “real” Java sockets in clack applications in order to
connect to the Internet without going through Clack. This can be useful for “redirecting”
traffic from elsewhere on the Internet so that it appears to be coming from within Clack.
See TCPRedirector and UDPRedirector in net.clackrouter.application for examples of
this.

Thanks for reading the “Hack Clack” developer documentation. Feel free to contact us at
feedback@clackrouter.net with any questions or comments!

 - The Clack Development Team

