
The Clack Graphical Router: Visualizing Network Software
Dan Wendlandt∗

Carnegie Mellon University
Martin Casado†

Stanford University
Paul Tarjan‡

Stanford University
Nick McKeown§

Stanford University

Abstract

We present Clack, a graphical environment for teaching students
how routers work, and other basic networking concepts. Clack
is a router written as a Java Applet, and routes real network traf-
fic in real-time. Students can look inside the router to see how
packets are processed, and watch the dynamics of the queues.
They can modify and enhance the router, and process packets
as they wish. Clack provides multiple views of the operational
router including the full network topology, the router’s software
components, and a packet-level view of the traffic as it passes
through the router.

Over the last two years, Clack has been used in the classroom
at six universities. Feedback from the students through anony-
mous, formal evaluations has been positive. In this paper we de-
scribe the goals and design of Clack as well as our experiences
with it in the classroom.

CR Categories: K.3.2 [Computers and Education]: Computer
Information Science Education—;

Keywords: software visualization,education,networking,router
design

1 Introduction

Teachers often use animations and simulators to explain net-
working concepts, such as packet-switching, routing, and
congestion-control. These are usually simple toys, designed to
illustrate a single concept and, when done well, they can be pow-
erful visualization tools. Our goal is a little different: We want
to enable students to peak inside a working Internet router while
it is processing live Internet traffic in real-time. This allows stu-
dents to understand the steps involved in routing (e.g. looking up
addresses, exchanging routing tables, choosing an output port,
discarding errored packets and processing exceptions) and un-
derstand how real networking equipment works. We’d like them
to see how buffers grow with congestion, how TCP controls con-
gestion, why packets are dropped, and how exceptions are pro-
cessed. We want students to see inside routers because routers
determine much of the Internet’s behavior. It’s inside routers
where packets are processed, queueing delay happens, routes
are decided, packets are dropped, and access control is imple-
mented. By seeing what happens inside the router, students gain
an appreciation of how the network works as a whole.

Normally, however, routers are opaque. Very little is instru-
mented inside routers (for example, routers typically don’t re-
port the occupancy of their buffers), and because router software
is proprietary, it is often hard to understand what is happening.

In recent years, learning environments have been created to
study networking traffic [Zhao and Mayo 2002; Kurose and Ross
a; Michael J. Jipping and Porter 2003], where students interact
directly with simulated, captured, or live Internet traffic. These

∗e-mail: dwendlan@cs.cmu.edu
†e-mail:casado@cs.stanford.edu
‡e-mail:ptarjan@cs.stanford.edu
§e-mail:nickm@stanford.edu

Figure 1: Network level view of three router topology in Clack.

Figure 2: Component view of a Clack router with real-time buffer occu-
pancy graph.

tools strive to tie common Internet functions familiar to students,
such as web requests, with network concepts, such as TCP be-
havior during packet-loss. But most classroom tools provide
only a partial view of how networking software works. For ex-
ample, they are usually limited to network processing at end-
hosts. Hence, students are given little or no insight into how
software in Internet routers is organized and configured or how
routers process and affect different classes of traffic.

Further, tools that visualize packets and protocol behavior are
generally passive and do not give users control over the behavior
of the router so they can control network behavior and visualize
the consequences.

In this paper, we present the Clack graphical router, a visu-
alization tool for demonstrating network concepts in the class-
room.



The goal of Clack is to provide a graphical, web-accessible
interface for students to explore the software structure of a func-
tional router and to access a rich set of protocol visualization
tools.

Clack is a Internet router (written in Java) that runs in user-
space, and processes real traffic just like a commercial Internet
router. Clack is a component of the Virtual Network System
(VNS) developed at Stanford University for classroom use, and
now used by more than 2,000 students nationwide. VNS builds
network topologies, consisting of Ethernet links and nodes; a
node can be a router, a switch or anything that processes packets
and has multiple interfaces. VNS manages many topologies at
once. Typically, each student has his/her own private topology.
The nodes in the topology are user-level processes (e.g. a router
written in C, C++, or Java); Clack is an example of a VNS router
written in Java.

One important feature of VNS is that every topology is con-
nected to the public Internet, and routes real traffic. Each node
has real IP addresses, and processes real Ethernet packets. An-
other important feature of VNS is that such a user-level process
can run on the VNS server that manages the topology, or it can
run remotely on any machine in the Internet and "bind" to a node
in VNS. This creates some interesting possibilities: A user-space
Clack router running on a machine at MIT can route real Internet
traffic passing through a VNS topology at Stanford. Students can
create topologies with hundreds of routers, where each router is
a different user-space router running elsewhere. Using our VNS
server at Stanford University, we can support thousands of stu-
dents around the globe on independent network topologies.

A demo of Clack is available here [Clack ]. If you visit the
Clack website and load the Clack applet, you will be running
a router on your computer that is routing traffic in our lab at
Stanford. If you click on your router, you can look inside it and
see how it processes packets, how packets are queued, and when
packets are dropped.

Clack was inspired by Click [Morris et al. 1999], a modular
router created for the research community and written in C++.
Clack, because it is written in Java, runs on any platform with-
out recompilation, and is easily extensible by undergraduate stu-
dents with relatively little programming experience. Clack con-
sists of a set of packet-processing blocks that can be (graphi-
cally) connected, added, removed, queried, and modified while
the router is running. Students can add and delete blocks and
set parameters, and then use inspection tools to see the effect
on network traffic. For example, they can add a block that mis-
sequences packets, to see the effect on congestion control algo-
rithms.

In this paper we describe Clack’s three main characteristics:

1. The student can visualize the insides of a router. Clack
shows each block, how it performs, and how blocks inter-
act.

2. The student can modify the function of the router by adding
new blocks, or modifying existing ones. For example, a
student could modify Clack to be a firewall or NAT device,
or decrease the size of the router’s packet buffers.

3. The student can affect traffic by dropping, altering or re-
ordering it. This is in contrast to popular, passive envi-
ronments for showing network traffic. The ability to af-
fect traffic is useful to understand protocol behavior during
variations in the network, such as queuing delay or loss.

Clack was designed to be simple to use and remotely accessi-
ble. It does not require students to have administrator access nor
install complex software packages.

In this paper, we describe Clack and our experiences with it
in the classroom. We first explain the design of Clack in Section
2 before describing the three levels of visualization in Section
3. Sections 4 and 5 describe features that enable instructors to
easily create visualizations of many different types of network
behavior. In Section 6 we describe and discuss our experiences
with Clack in the classroom. Finally, we present previous work
in the area of visualizations for networking education and briefly
outline our plans for future development.

2 Clack Design

2.1 Overview

When Clack is first loaded, it displays the virtual network topol-
ogy that it is connected to (see figure 1). The network topol-
ogy may include one or more routers, application servers (such
as web and ftp servers) and a connection to the Internet via a
firewall. The network topology is being emulated by a virtual
networking environment hosted remotely and described in sec-
tion 2.4.

If the user sends network traffic (such as a web request) to the
IP addresses assigned to the topology, the traffic will be routed
over the Internet, to the topology, and through the routers. A
user may, for example, download a web page from a web server
on the topology and have the traffic pass through their router.

The heart of Clack is the router view (section 2.3). From
the network view, the user can click on the router to “zoom in”
and see its internal state and software composition (figures 2, 3,
and 4). The router contains components connected as a directed
graph through which packets flow. Each component performs
some portion of the packet processing functionality, such as
making forwarding decisions, buffering packets, or implement-
ing a transport protocol like TCP.

The router components provide component-specific views
that describe the components and show its state and configura-
tion. Some components provide the ability to view properties of
packets or network flows passing through the router in real time.
For example, it is possible to view buffer queue occupancey per
flow for multiple protocols (figure 10) or how a small buffer af-
fects the TCP congestion window (figure 7).

In the next two sections we discuss the goals behind the de-
sign of Clack and present its visualization features in more de-
tail.

2.2 Design Goals

In building Clack we sought to create a general purpose tool for
visualizing router software structure as well as the behavior of
protocols handled by the router. Clack was designed for use in
the following scenarios:

1. In-Class Demonstrations: Instructors go beyond the
blackboard and slides to demonstrate networking concepts
in a clear, realistic, and interesting way.

2. Hands-on Learning: Students can perform visual net-
working “experiments” in lab exercises or benefit from in-
teractive and exciting homework assignments.

3. Network Programming: When programming complex
network assignments, students can see desired functional-
ity in operation with Clack, and utilize the visualizations
to debug their own code.

While designing a graphical tool to support these goals, our
own experience teaching networks and feedback from our initial



Figure 3: The components of a functional Clack router issuing an ICMP
“port unreachable” packet in response to the TCP component receiving a
packet at an unopen port. The highlighted links indicate the path of the
arriving and departing packets.

use of Clack in the classroom led to the following core design
goals:

Enable network processing transparency: Clack should
clearly show the different modules of software that implement
network functionality and describe their associated state in addi-
tion to how they handle different types of network traffic.
Capable of abstracting unneeded complexity: Real networks
and protocols contain significant complexity at many different
logical levels, ranging from network topology to individual bits
in packet headers. Allowing instructors to decide what and how
functionality is exposed is critical to keep students from being
overwhelmed with unnecessary information.
Powerful control over network characteristics & traffic: In-
teresting networking properties are the result of network condi-
tions, such as topology, link characteristics, and router queuing
and the current mix of traffic flowing across the network. The
value of a visualization tool for networking education is closely
tied to the capabilities provided to control these factors.
Lightweight & simple to use: Giving each student his/her own
virtual network of routers requires that Clack and the virtualiza-
tion subsystem be highly scalable. Additionally, as an instructor
may choose to use Clack for only one or two assignments/labs in
the duration of a course, the overhead of accessing and learning
to use Clack must be minimal.
Easily extensible framework: The community of networking
educators will undoubtedly think of new and innovative ways
to extend Clack to meet additional needs in their own courses.
The core visualization capabilities already provided by Clack
should allow new network code to be plugged-in by third-parties
with without any GUI programming. Integrating new analysis
and graphical function should require minimal knowledge of the
software as a whole.

These goals present our focus for the remainder of the paper.
Before exploring these topics in detail in the later sections, we
now cover the basics of Clack design.

2.3 A Modular Router Design

Clack’s packet processing functionality is implemented as a set
of individual components connected together by wires. Packets
are passed from component to component, each of which may

generate a response packet, drop the packet, or send it to another
component to which it is directly connected.

This modularized design is adopted from the Click modular
router [Morris et al. 1999], a high-performance router for Linux.
As in Click, an individual component generally implements only
a small portion of router functionality, keeping component de-
sign simple and easy to understand. Components perform packet
processing and can keep state as configured manually by the user
or automatically via a protocol.

Components have one or more “ports,” that provide channels
for passing packets between components. Each port has a di-
rection, “In” or “Out” and any component may have multiple
ports which accept traffic from multiple sources or feed traffic to
multiple destinations. For example, one of our basic router com-
ponents receives packets from the link layer and sends them out
one of two ports, one for IP traffic and another for ARP traffic.

Each component in a Clack router is implemented in a single
Java class. Similarly, packets in Clack are Java objects of a type
derived from a generic packet class. Packet classes provide get-
ter/setter methods to simplify packet processing and modifica-
tion for component writers. Packets are processed by a router by
simply passing a reference to the packet object from one com-
ponent to another via ports until a packet is either dropped or
handed off to an output interface component to be sent to an-
other host in the virtual network.

To demonstrate the use of Clack, we first implemented a base
set of components comprising a simple router. This includes
ARP functionality, basic IP forwarding and ICMP handling for
generating echo, TTL-expired, and port-unreachable messages.
In our implementation, queues are explicit components to pro-
vide greater transparency and configurability. In addition, we
have developed TCP and UDP stacks which are simplified yet
interoperable with real-world network stacks (figure 3).

Clack utilizes two open-source libraries: JGraph [JGraph
] for visualizing network and router level object graphs and
JFreeChart [JFreeChart ] for real-time charting capabilities.

2.4 Gaining Access to Internet Traffic

When a Clack applet is loaded, it initiates a TCP connection
back to a server that will host its virtual network, from which
it can send and receive Internet traffic. This ability to access
live Internet traffic is provided by the Virtual Network Sys-
tem(VNS) [VNS ].

VNS emulates virtual network topologies reachable from the
Internet. In a simple example, for each Clack instance that
is loaded from the web, VNS could create a network topol-
ogy with one router (which would be the Clack instance) con-
nected as a gateway to two standard application servers (which
are real machines, like a Linux web server, that are multiplexed
into each virtual network). If ten Clack instances were running,
VNS would be emulating ten completely independent, isolated
topologies. For each topology, VNS assigns global IP space to
be used by the routers and application servers. Therefore, any
traffic sent to those IPs (such as a web-request), would be sent to
the topology and thus be processed by the Clack instance.

VNS sends all traffic received on a given topology to Clack
over the TCP connection, specifying which router interface the
packet was received on. Similarly, to send packets on the Inter-
net, Clack sends the desired packets to VNS and specifies the
interface to send it out on. VNS treats all packets as raw Ether-
net frames, therefore the Clack router can arbitrarily modify the
IP header allowing it to acts as a full router. Note that provid-
ing direct access to link-layer traffic typically requires the user
to have administrator privileges. We avoid this by running VNS
as a privileged process on our remote machine and sending all



the traffic which we receive on to the Clack applet over the es-
tablished TCP connection.

In addition to emulating simple single router topologies, VNS
can emulate topologies of arbitrary complexity. As described in
section 6.2, we use topologies with three routers to teach the
implementation of a simple routing protocol.

3 Visualizing Network Behavior

When viewing the router, students must be able discern “what” is
happening within the router software. That is, students should be
able to recognize the flow of a single packet or stream of packets
through the router and determine whether a packet reached an
output interface, was used to generate a reply, or was dropped.
It is also important that students understand the “why” behind
the router’s action. To aid in this, Clack provides introspection
into the router software and associated state at each component
during runtime.

To provide transparency with respect to the router and proto-
col behavior, Clack provides a variety of mechanisms to convey
information to students in an intuitive way without exposing un-
necessarily complex network details. Because the optimal level
of visual abstraction depends on the specific behavior being an-
alyzed, Clack offers the user three distinct vantage points, the
network level view, the router level view and the packet level
view.

3.1 Network Level View

The highest level of abstraction available in Clack is the net-
work view, which displays the topology of routers and hosts,
with their interfaces connected by links (figure 1). While indi-
vidual portions of router functionality are not accessible at this
level of abstraction, the network view is critical in allowing stu-
dents to gain a “big picture” understanding of the network topol-
ogy, which orients them for understanding the operation of the
network at higher-detail granularities.

Within the network view, links light-up to indicate traffic as it
flows from the Internet and through the topology, allowing users
to see how traffic is crossing the network, but not necessarily
why. Students can also modify the status of links in the network,
enabling or disabling them in order to test the network’s reaction
to failures.

As described in the following section, to analyze the details of
router behavior, the user “zooms in” to the modular router view
of Clack, where one may inspect an individual component’s state
and behavior. The primary exception to this paradigm is the use
of the network view to simultaneously view the contents of each
router’s routing table state (see figure 9). These routing table
views update in real-time and highlight table entries as they are
used to forward packets, allowing a user to debug and understand
routing in complex networks while still maintaining the picture
of the overall topology provided by this view.

3.2 Router Level View

By clicking on a router icon in the network view, the user “zooms
into” the router view, which displays a single window of box-
like components connected by directed and visible wires (fig-
ure 4). As packets flow from one component to another, the
wires carrying these packets change color, giving a visual indi-
cation of the packet-processing flow through the router and help-
ing students understand the dynamics of router software. Con-
ceptually, each wire is a procedure call between two different
modules of the routing software, with the semantics of the ports
defining the interface between components in a manner similar

Figure 4: Router level view of Clack during an HTTP file download. The
highlighted edges indicate the traffic path through the router.

to object-oriented programming. Users have the ability to con-
trol the overall speed with which components pass packets to
each other, allowing them to slow down packets to more easily
see the sequential behavior of individual packets flowing through
the router 1.

Clack routers can either be built component by component
or automatically loaded from configuration files (section 5.2).
When empty, a router consists only of the the interface compo-
nents that represent input/output channels to the virtual network
through the router’s interfaces. Building or modifying a router
consists of adding, deleting, moving, or editing individual com-
ponents within the router view and connecting their ports to cre-
ate a graph that performs the desired packet-processing.

Most components are represented on screen as simple boxes
labeled with the component name. To promote a more intuitive
understanding of the interrelations between different types of
components and each component’s position within the OSI layer
model, components are colored depending on their membership
in certain functional groups (e.g. all ARP-related components).

Within Clack it is also possible to make components that up-
date their appearance in real-time depending on the component’s
behavior or state. For example, our simple Clack router has
queues that fill and drain in real-time (see figure 4). Additionally,
components can flash colors to indicate to the user that a partic-
ular event happened and that closer inspection is warranted. For
example, a component such as the routing table would flash red
and log an error message to indicate that a packet destination did
not match any route in the table.

3.2.1 Detailed Exploration of Routing Software De-
sign and Function

The number of components within the router view is such that
an actual component block on screen is too small for displaying
detailed information about the component’s state and configura-
tion. Clack provides “properties views”, which are similar to the

1Albeit at the potential cost of causing a network timeout if a slowed
packet is mistakenly assumed to be lost by a network end-point



Figure 5: An example property view window used by students to explore
the internal state and operation of a routing table component. The configu-
ration pane is shown here, while the tabs at the bottom of the window are
used for accessing other panes of the property view.

properties dialog windows commonly used in modern file man-
agers and other applications, to solve this problem (see figure 5).
Properties views are pop-up windows that contain several tabbed
panes of detailed information, the exact content and packaging
of which is tailored to the individual component. This allow
users to “drill down” into the component.

Standard Property Views: All component properties views
share a few standard features, including a tabbed pane that pro-
vides a description of each of the component’s ports and dis-
plays the neighboring component and port to which each local
port is currently connected. This describes to students the ba-
sic software interface exported by this component, and indicates
which other router components provide functionality needed by
this component. For example, the routing table component’s port
for outgoing IP packets with valid routes connects to the IP TTL
component’s port for IP packets needing a TTL decrement and
new header checksum 2.

Another standard feature is an embedded HTML page de-
scribing in detail the internal state and algorithms used by the
component and how each port relates to this behavior (figure 6).
Properties views also display statistics about the component, in-
cluding general values such as packet in/out counts as well as
information unique to a component’s specific behavior (e.g. the
total number of packets dropped by a queue).

Finally, Clack also offers a textual logging console within
each component’s property view for particular cases when nu-
meric precision is necessary, viewing an entire flow of events as
a sequence is beneficial, or messages will be viewed only well
after they have occurred (as is the case when a component sig-
nals an error).

Extended Property Views: Property view windows are also
important for exposing the current state of components, such as
the ARP cache or IP routing table. The ability to see and edit this
state helps students understand the router’s decision process. As
a result, the properties windows also serve as the main mecha-
nism for modifying the internal state of a component. Property
views can also provide more in-depth visualizations related to
that component, such as graphical plots relating to the compo-
nent’s operation. These visualizations benefit from the wealth of
core and third-party graphics libraries available for Java.

2This information is also accessible directly from the router view,
using a “mouse-over” of the wire connecting the two ports

Figure 6: Documentation pane describing the Level2Demux component

Figure 7: A real-time graph showing the evolution of the TCP conges-
tion window for live TCP flows. This graph is used to illustrate the TCP
congestion avoidance algorithm.

Creating router components with a sole purpose of supporting
such visualizations has proven to be a simple yet powerful tool
for visualizing properties of the traffic flowing through a router.
For example, we implemented a component which is placed in-
line with the router’s IP forwarding path and creates real-time
graphs of per-flow TCP sequence numbers vs. time to demon-
strate congestion control and retransmission behavior (figure 7).

3.3 Packet Level View

The third and most detailed of the different views provided by
Clack is a packet analyzer modeled after Ethereal [Combs ]. Due
to its current popularity both in and out of the classroom, many
students are already familiar with the user interface. This view
contains three graphical sub-panes: the packet summary pane,
the header information pane, and the packet contents pane (fig-
ure 8). The packet summary pane contains a list of all packets
captured in sequential order with basic information to inform
the user about the general content of each captured packet. The
packets may be sorted based on packet type (e.g. FTP) or which
interface it came in on. This allows the user to follow specific
flows even when there is a significant amount of traffic through
the router.

When a user clicks on a particular packet summary, the lower
two views provide more detailed information about that packet.
The header information pane offers an expandable tree of all
major packet headers (link, network, and transport level) and
provides easy to read labeled fields showing the value of each
header field. The third pane shows a byte-by-byte view of the



Figure 8: Packet level view of a web transfer using the Ethereal compo-
nent.

packet in hexadecimal, along with the same bytes interpreted as
ASCII. To help students draw the connection between protocol
parameters seen in the header information pane and the actual
byte content of the packet, selecting any value in the header pane
highlights the corresponding bytes in the packet contents pane.
Similarly, if a student wants to know what a specific byte in the
packet means, they can just click on it and the expandable tree
will select the corresponding information.

The packet analyzer can be used to sniff all traffic sent to or
from a particular router in a Clack network or as a component
placed in the router graph to sniff only the traffic sent through it.
In both instances, the packet analyzer provides the packet level
details that the network and router level views abstract away. If
a higher level view shows traffic traversing a link or wire and the
student does not already understand what packets that traffic rep-
resents, the student may use the packet analyzer to find out. This
provides powerful control over the amount of detail students are
confronted with when examining a router or network topology.

Similar to the “Ethereal Labs” discussed in Section 7, Clack’s
packet analyzer can be used to study packet features of end-to-
end protocols like TCP. Additionally, Clack can explore infras-
tructure level protocols, like routing update messages after a link
failure, that would be inaccessible to normal ethereal users. Such
inspection capabilities have also proven very useful for students
in courses using Clack as a network programming platform.

4 Controlling the Network Environment

Demonstrating network concepts requires precise control over
the network environment. This includes both the ability to gen-
erate different types or patterns of network traffic and to control
key network parameters such as delay and loss.

4.1 Traffic Generation:

The Clack toolkit provides instructors with several options for
generating traffic to be processed by Clack routers: traffic can

flow either between an outside machine and a host within a
Clack virtual topology, or between two hosts inside a topology.
We outline three mechanisms for traffic generation below.

Physical Hosts within a Clack Topology:
The simplest mechanism for generating traffic through a Clack
router is to use an application, such as ping or traceroute,
running on the same client machines that is running Clack.
While routers can respond to these limited types of messages,
significant amounts of transport-level traffic require more
sophisticated applications running within a topology. The
underlying VNS layer supports the integration of physical host
machines running applications, like web or audio streaming
servers, into virtual topologies, giving a simple means of
providing TCP and UDP download flows through the router.

Clack Applications:
Since Clack includes simplified TCP and UDP networking
stacks, we also provide the ability for users to write “Clack appli-
cations” that run on top of these networking stacks. These appli-
cations have all the capabilities of regular Java threads (including
access to regular Java sockets) and additionally have access to a
simplified socket interface for sending and receiving traffic via
the router’s network stack. For example, we have implemented
several applications, including an HTTP-GET requesting agent
and a very simple web server for visualization of the local TCP
stack components of a Clack router.

Clack applications also provide the ability to easily install
a traffic “redirector” on a router, which transparently proxies
traffic to and from a real Internet host. That host provides the
actual application functionality, making it appear as if a service
is provided by a host within the Clack network. This capability
is useful in allowing instructors to leverage real-world services,
such as DNS, without requiring these applications to be installed
on physical machines co-located with the VNS server.

Programmatic Traffic Generation:
While leveraging live traffic for visualization is a major strength
of Clack, those using Clack also have the option of creating
traffic by directly instantiating packet objects and “injecting”
them on a particular router interface. This facility exists pri-
marily to allow visualization of traffic behavior that would be
difficult to demonstrate using normal application level traffic.
Visualizing how a TCP stack handles duplicate/overlapping seg-
ments or inappropriate header flags is an example of this, since
“well-behaved” networks stacks should not generate such pack-
ets. Testing student implementations is another useful applica-
tion of this mechanism.

4.2 Controlling Network Characteristics and Ir-
regularities

Clack supports the creation of arbitrarily complex virtual net-
work topologies, which is particularly important when visualiz-
ing highly topology dependent topics like routing protocols. Ad-
ditionally, the ability to disable and enable network links allows
students to see how routers react to network failures.

Giving instructors the ability to dynamically tweak network
link characteristics, such as relative link speed, packet-loss, and
packet reordering, allows them to demonstrate how end-to-end
protocols are impacted by such network-level factors. Such
properties are often very difficult to demonstrate using other
network visualization tools that view live Internet traffic over
a physical network, which does not provide similar control over
network conditions. Clack uses “auxiliary components” placed
in the forwarding path of the router to emulate the link level be-



havior. For example, we use a packet throttling component that
slows down all packets passing through it by a configurable rate.
This creates a bottleneck link resulting in network congestion at
output queues. This could be used to demonstrate the interplay
between queue occupancy and TCP congestion control.

5 Customizing Clack

Adopting Clack for use in a remote educational institution is
easy, as the VNS infrastructure itself is hosted and administered
at Stanford. Instructors (or students) interested in using Clack
email us the number and type of topologies required and re-
ceive, in return, a link for the students to click on to access a
pre-configured Clack router. An instructor may extend Clack to
add demonstration or project specific functionality. Any exten-
sions or changes in the default configuration can then be serial-
ized and made accessible to all students.

In this section we describe the facilities provided by Clack to
handle extensions of new network functionality or visualization
capabilities and serialization of router configuration state.

5.1 Extending Clack

A major consideration in Clack’s design was providing a simple
interface for third-party developers (such as instructors or course
staff) to add new capabilities. Adding new router or analysis
functionality is done by creating a new sub-class of the Clack-
Component object that defines this newly added component’s in-
put and output ports and implements the specific packet process-
ing functionality desired. A major benefit of Clack’s modular
design is that adding new functionality does not require under-
standing how the the other parts of a Clack router operate. Prop-
erty views, including basic statistics, port connectivity informa-
tion, and console logs (See 3.2.1), are automatically created for
a component with no work required from the developer. With
a small amount of knowledge about Clack API’s and Java GUI
programming, the developer can allow users to view and modify
component specific state or add new features such as real-time
graphs and other visualizations. Developers can also easily write
new Clack applications and extend the packet analyzer to parse
new protocols.

5.2 Clack Configuration

Clack’s support for serializing and loading configurations allows
an instructor to configure the routers and network once, and then
replicate this configuration over hundreds of identical topologies
for individual students.

After a network of routers is built, Clack serializes both
graphical position and network configuration information to an
XML file so the identical set-up can be loaded at a later time,
even on a different virtual network. The file also indicates
whether each router will be displayed in its own graphical win-
dow for the user to view and edit or if it will be run in the back-
ground as a “supporting router.” Supporting routers may be con-
figured to participate in a routing protocol and/or generate traffic
as described in section 4.

For more information about Clack’s features related to exten-
sibility and configuration, please see [Wendlandt 2005].

6 Clack in the Classroom

At present, Clack has been used in networking courses at six
universities to aid in understanding the design and function of

network routers. We are currently working with two other insti-
tutions to develop curricula for demonstrating networking con-
cepts for both undergraduate computer science students and non-
majors. In this section we discuss our experiences using Clack,
both here at Stanford and remotely, and describe our ongoing
efforts to broaden its utility in the classroom.

6.1 Building a Router

Clack’s principle use has been to aid students in understanding
the design and function of software routers. The VNS project at
Stanford hosts a popular introductory networking assignment in
which students implement Internet routers in C. To help in the
design and development of their routers, we make Clack avail-
able to each student so they can see, at a high-level, a component
abstraction of the functional software blocks and how they oper-
ate on real traffic.

Students use property views and other available visualizations
to explore the state kept by each component. They can see how
modifying state, such as the routing table, impacts how traffic is
processed within the router and whether that traffic successfully
reaches its destination.

In addition to demonstrating a sound software construction,
the students use Clack and its inline protocol analyzer to un-
derstand fundamentals of packet processing in routers: decap-
sulation and encapsulation, protocol demultiplexing, the IP for-
warding path, ARP processing and lookups, as well as common
ICMP functionality. Students using Clack can probe their graph-
ical routers with pings and traceroutes to see what functional-
ity the router must implement in order to correctly handle these
packets and can refer back to it throughout the course of their
development to clarify how their router should be performing.

The software router assignment in C has been used at six Uni-
versities, including our own, over the past four years. Over the
last year, students at five of those institutions have had access
to Clack while building their routers. The introduction of Clack
reduced the number of questions posted to the course mailing
list appreciably. Furthermore, the assignment code submitted
by students during our use of the visualizations had noticeably
cleaner module decompositions which, in many cases, directly
mimicked the components as displayed by Clack.

At the completion of the router projects using Clack over
the last year, we have collected student feedback using formal,
anonymous evaluations taken online. The evaluations asked stu-
dents in what ways Clack was helpful in understanding and
building network routers and whether it should continue to be
part of the assignment. The students responses have been very
positive. All the responses indicated that Clack was helpful and
should continue to be offered along with the assignment.

The particular aspects of the visualization that students found
useful varied by response. Many students commented on the
ability to view packets as they travel between components and
illicit responses. Particularly beneficial was Clack’s support for
slowing the router so that per-component processing was easy
to follow. The ability to see a modular decomposition of the
software was also widely commented on. As part of our future
work, we plan to continue to investigate which features of Clack
are most heavily relied on by students when building their own
routers.

6.2 Programming & Visualization: Implement-
ing RIP Routing

At the time of this writing, an undergraduate networking class
at Simon Fraser University is using Clack as a program-



Figure 9: Close-up view of a portion of the network view used in the RIP
assignment. We can see the routing tables of two routers with recently used
entries highlighted. The direct network link between the two visible routers
is disabled (colored red) so packets to and from the application server are
routed through the third, partially visible router.

ming platform for students to implement and visualize a RIP-
like[RFC1058 ] distance vector routing protocol.

Like many distributed protocols, understanding and debug-
ging a distance vector routing protocol is greatly aided by vi-
sualization support. Students were given a skeleton component
within which to implement their RIP functionality and could use
Clack visualizations such as the topology-level view of routing
tables (section 3.1 and figure 9) and the packet analyzer (section
3.3) to debug their implementations while probing them with
real Internet traffic.

Students received three configurations for Clack: a “reference
configuration” with all three routers running a reference imple-
mentation of the RIP module, a “development configuration”,
where one of the three routers ran the student’s RIP module, and
a “test configuration”, which had all three routers running the
student’s code. As a result, students could enable/disable a link
or modify a path metric and ping through their network topology
to compare their modules’s behavior to the reference implemen-
tation in a simple and visual way.

Demonstrating the advantage of Clack’s scalability, each pair
working on the programming assignment received two indepen-
dent Clack networks, enabling them to run the reference imple-
mentation and their own side by side to visually debug any dis-
crepancies. While we have not yet completed a formal evalu-
ation, initial, informal feedback has indicated that students feel
they gained improved insight and produced more robust code
by being able to see their routing protocol and compare it to a
reference visualization.

6.3 Interactive Lab: Network Transport Layers

We are also currently working with the course staff of a “com-
puter science for non-majors” course at Princeton University
to develop a hands-on networking lab using Clack to demon-
strate key properties of transport-level protocols with respect to
network congestion. Clack’s ability to create varied conditions
for packet congestion and loss, along with its integrated graph-
ing capabilities for analyzing the behavior of individual flows
greatly facilitates the creation of such a lab. Also important to
this course’ instructor is Clack’s simple interface, its ability to
hide complexity by showing just a “bare bones” router, and the
use of comman Internet clients, such as web browsers, to gener-
ate network traffic for analysis.

In this lab students use their web browsers to download files
from a webserver in the topology to create TCP flows through

Figure 10: Real-time graph of a TCP and UDP flow competing on at bot-
tleneck link. The UDP audio stream starts at time 125 sec and significantly
limits the throughput of the TCP flow until the the audio stream ends at 160
sec.

their router, which has one of its interfaces configured to be
the bottleneck link on the path from the webserver to the user’s
computer. Students use a multimedia application such as Ap-
ple’s Quicktime to access a streaming audio/video server also
within the topology using the Real Time Streaming Protocol
(RTSP) over UDP. The current lab design offers the following
core demonstrations:

1. Observe TCP congestion control with a single flow under
varying queue sizes. A graph of queue occupancy will
exhibit the classic “TCP sawtooth” shape, a feature of-
ten cited in networking courses because it is indicative of
TCP’s specific congestion control algorithm (visible in fig-
ure 10).

2. Show two TCP download flows sharing the same output
buffer at a bottleneck link. Within the per-flow queue
occupancy graph, flows will receive roughly the same
occupancy over time, because TCP congestion control
achieves approximate resource fairness among competing
TCP flows when bandwidth is scarce.

3. Create a UDP audio flow through this same congested
buffer to illustrate the interaction of TCP’s loss-based con-
gestion control mechanism with UDP, which does not react
as conservatively to loss. The queue occupancy graph (fig-
ure 10) will show the UDP flow consume nearly all queue
capacity, largely starving the TCP flow until the UDP traf-
fic halts.

4. Use audio streaming over RTSP to demonstrate that, un-
like reliable protocols such as TCP, real-time protocols de-
grade quality instead of retransmitting lost packets. We
install a configurable packet loss component in the for-
warding path of the router that allows students to click a
button to drop the next packet passed through the compo-
nent. After seeing how a TCP download reduces it rate and
retransmits after a loss, students listen to a song streamed
through their router and choose when to drop packets. Sin-
gle packet drops result in a small blip in the audio, while
several successive drops result in more significant quality
degradation.

7 Related Work

Network Packet Analyzer Labs: Graphical packet analyzers,
such as Ethereal [Combs ], are a popular method of providing
hand-on access to real network traffic. Packet analyzers allow



students to capture network traffic on a local computer (or use
previously capture traffic), and view packet header fields and
data within a GUI that parses and formats the packets. The Vi-
sual TCP/UDP Animator [Zhao and Mayo 2002] has capabilities
similar to Ethereal for TCP and UDP traffic, and adds in some
TCP specific visualizations, such as a “time-line view” of a TCP
connection.

While useful for simple demonstrations, packet analyzer labs
have three notable limitations when used for networking educa-
tion. First, they must either be used in a lab environment, or
in another network location where other “real-world” network
traffic will not create a noisy and confusing packet trace. Sec-
ond, protocol analyzers can typically get a packet-level view of
end-host behavior, but cannot observer router processing behav-
ior. Third, even when a packet analyzer is being used to explore
end-to-end protocols, it can only observe traffic and can’t mod-
ify link properties or queuing behavior that allows instructors to
create many of the scenarios they wish to demonstrate.

Network Simulators: Network simulators such as ns-
2 [VINT-NS-2 ] or OpNet [OpNet ] provide a synthetic environ-
ment for simulating network protocols in multi-node topologies.
They allow users to specify topology configuration including,
link and router properties as well as traffic types and patterns.
Most simulators have a visualization components [Deborah Es-
trin and Yu 2000], some of which have been used to create scripts
designed for classroom use [VINT-NAM ].

Generally, these environments were developed to aid in re-
search and focus on correctness rather than providing an intu-
itive educational interface. Further, because they rely on discrete
event simulation, they often don’t have native support for visu-
alizing real Internet traffic or modifying device configurations in
real time.

Specific Network Animations: In step with the large number
of animations used to teach popular algorithms to computer sci-
ence students, over the years networking educators have created
animations to demonstrate many core networking concepts, such
as encapsulation, queuing mechanisms, or routing protocols.
Predominantly these are stand-alone visualizations to demon-
strate a single networking concept[Kurose and Ross b; Holliday
2003; White 2001; VITELS ].

Visualization of Network Programming Assignments:
Some special-purpose programming environments allow stu-
dents to implement and visualize the behavior of network
code [Rohit Goyal and Durresi 1998; McDonald 1991;
Pilu Crescenzi and Innocenti 2005]. Primarily these tools fo-
cus on endhost concepts such as link-level access control or
transport-level congestion control and operate over idealized
protocols.

8 Conclusion

Clack fills a gap in network-education visualization environ-
ments by combining a detailed view of the software of an op-
erational router along with real network traffic and the ability to
drop, modify and inspect packets. It is easy to adopt and inte-
grate into an existing classroom setting because it is web accessi-
ble as a Java applet and doesn’t require administrator privilieges
to gain access to raw network traffic.

We’ve successfully used Clack at six universities to aid in the
development of software routers and demonstrate networking
concepts. Feedback both from the professors and students has
been very encouraging.

Clack and associated curriculum is publicly available and
fully supported by our group. A live demo is available online at
http://www.clackrouter.net along with the full source code, de-

veloper documentation and other resources to help instructors
integrate Clack into their classroom.

We are working to expand Clack and provide more course
materials for use in networking classes. Our plans include using
Clack as an in-class demonstration tool, a graphical environment
for “lab experiments”, and a visualization tool for students de-
veloping Internet software as part of networking courses.

References
CLACK. Clack graphical router project. http://www.clackrouter.net.

COMBS, G. Ethereal network analyzer. www.ethereal.com.

DEBORAH ESTRIN, MARK HANDLEY, J. H. S. M. Y. X., AND YU, H.
2000. Network visualization with nam: the vint network animator. In
IEEE Computer 33(11):63-68.

HOLLIDAY, M. A. 2003. Animation of computer networking concepts.
In Journal on Educational Resources in Computing.

JFREECHART. Jfreechart: A free java chart library.
http://www.jfree.org/jfreechart/index.php.

JGRAPH. Jgraph: Java graph visualization and layout.
http://www.jgraph.com.

KUROSE, J. F., AND ROSS, K. W. Ethereal labs.
http://gaia.cs.umass.edu/ethereal-labs.

KUROSE, J. F., AND ROSS, K. W. Kurose and ross student resources -
applets. http://wps.aw.com/aw_kurose_network_3/0,9212,1406346-
,00.html.

MCDONALD, C. 1991. A network specification language and execution
environment for undergraduate teaching. In SIG Computer Science
Education Bulletin.

MICHAEL J. JIPPING, AGATA BUGAJ, L. M., AND PORTER, D. 2003.
Using java to teach networking concepts with a programmable net-
work sniffer. In SIG Computer Science Education Bulletin.

MORRIS, R., KOHLER, E., JANNOTTI, J., AND KAASHOEK, M. F.
1999. The click modular router. In Symposium on Operating Systems
Principles, 217–231.

OPNET. Opnet modeler software.
http://www.opnet.com/products/modeler/home.html.

PILU CRESCENZI, G. G., AND INNOCENTI, G. 2005. Netpride: An
integrated environment for developing and visualizing computer net-
work protocol. In Innovation and Technology in Computer Science
Education.

RFC1058. Request for comments (rfc) 1058: Routing information pro-
tocol. http://www.ietf.org/rfc/rfc1058.txt?number=1058.

ROHIT GOYAL, STEVE LAI, R. J., AND DURRESI, A. 1998. Laborato-
ries for data communications and computer networking. In Proc. of
Frontiers In Education Conference, p. 1113-1118.

VINT-NAM. Using ns and nam in education.
http://www.isi.edu/nsnam/ns/edu/index.html.

VINT-NS-2. The network simulator. http://www.isi.edu/nsnam/ns/.

VITELS. Virtual internet and telecommunications laboratory of
switzerland. http://www.vitels.ch.

VNS. The virtual network system. http://yuba.stanford.edu/vns/.

WENDLANDT, D. 2005. Clack: A Graphical Router Toolkit for Net-
working Education. Undergraduate honors thesis, Stanford Univer-
sity, Computer Science Dept.

WHITE, C. M. 2001. Visualization tools to support data communica-
tions and computer network courses. In Journal of Computer Sci-
ences in Colleges, Vol. 17 Issue 1.

ZHAO, C., AND MAYO, J. 2002. A tcp/udp protocol visualization tool:
Visual tcp/udp animator (vta). In Intl. Conference on Engineering
Education.


	Introduction
	Clack Design
	Overview
	Design Goals
	A Modular Router Design
	Gaining Access to Internet Traffic

	Visualizing Network Behavior
	Network Level View
	Router Level View
	Detailed Exploration of Routing Software Design and Function

	Packet Level View

	Controlling the Network Environment
	Traffic Generation:
	Controlling Network Characteristics and Irregularities

	Customizing Clack
	Extending Clack
	Clack Configuration

	Clack in the Classroom
	Building a Router
	Programming & Visualization: Implementing RIP Routing
	Interactive Lab: Network Transport Layers

	Related Work
	Conclusion

